

Aircraft Display Systems

1112111

C SPD

VHAV PTH CHO

9000

Malcolm Jukes

Series Advisors Ian Moir and Allan Seabridge

Professional Engineering Publishing

Related Titles

Title Aircraft Systems – Second Edition	<i>Author</i> I Moir and A Seabridge	<i>ISBN</i> 1 86058 289 3
Civil Avionics Systems	I Moir and A Seabridge	1 86058 342 3
Air Engines	T Finkelstein and A J Organ	1 86058 338 5
Aircraft Conceptual Design Synthesis	D Howe	1 86058 301 6
Optimizing the Super- Turbocharged Aeroengine	J Panting	1 86058 080 7
Aviation Ground Support Equipment	IMechE Seminar	1 68058 194 3
Aerospace Transmissions Technology	IMechE Seminar	1 86058 199 4
Journal of Aerospace Engineering	Proceedings of the IMechE, Part G	ISSN: 0954/4100

For the full range of titles published, by Professional Engineering Publishing (publishers to the Institution of Mechanical Engineers) contact:

Marketing Department Professional Engineering Publishing Limited Northgate Avenue Bury St Edmunds Suffolk IP32 6BW UK Tel: +44 (0) 1284 763277; Fax: +44 (0) 1284 704006 E-mail: marketing@pepublishing.com www.pepublishing.com

Contents

Series Advisors' Foreword	xiv
Author's Preface	XV
Acknowledgements	xvii
Acronyms and Abbreviations	xix
Chapter 1 – Introduction	1
Chapter 2 – Transport Aircraft Flight Deck	5
Introduction	5
The mechanical era	6
The Wright brothers	6
Bleriot	7
The barnstorming years	7
Lindbergh	8
Lieutenant James Doolittle	9
The electromechanical era	9
The Lockheed Electra – 1930s	10
The Boeing B17 Super Fortress – 1930s	11
The Avro Lancaster – 1940s	11
The Handley Page Hermes – 1950s	13
Migration from 'Basic 6' to 'Basic T' instrument configuration	18
The Boeing 747 – 1970s	20
The Attitude Direction Indicator (ADI)	21
The Horizontal Situation Indicator (HSI)	22
The Altimeter	23
The Airspeed Indicator (ASI)	24
Standby instruments	24
The electro-optical (glass) flight deck	25
Advanced civil flight deck research	25
BAC 1-11 technology demonstrator	26
Boeing 757 and 767	29
British Aerospace Advanced Turbo-Prop	31
Airbus A320	32
Boeing 747-400	33
Lockheed C130-J Hercules	34
Flight deck upgrades	35
Glass standby instruments	39

References	
Chapter 3 – Military Fighters and Rotorcraft	
The mechanical era	
The Royal Aircraft Factory S.E. 5a – 1917	
The Sopwith Snipe – 1918	
The electromechanical era	
The Supermarine Spitfire	
The Gloster Meteor – 1944	
Hawker Siddley (BAE SYSTEMS) Harrier GR.Mkl	
and Mk3 (RAF) and AV-8A (USMC) – 1970s	
Panavia Tornado GR.Mk4 – late 1970s	
The electro-optical era	
McDonnell Douglas F/A-18 Hornet- early 1980s	_
McDonnell Douglas/British Aerospace Harrier II AV-8B and GR.Mk	7
Eurofighter Typhoon – 1990s	
Lockheed Martin F-22 Raptor – late 1990s	
Rotorcraft	
Boeing (McDonnell Douglas/Hughes) AH-64D Longbow Apache	
Westland Lynx	
References	
Chapter 4 – Electromechanical instruments	
Mechanical instruments	
The rev-counter (Tachometer)	
The incidence vane	
The airspeed indicator	
The altimeter	
The primary flight	
Attitude (pitch and roll)	
Compass	
Electromechanical instruments	
The Attitude Direction Indicator (ADI)	
Barometric instruments	
The altimeter	
The Airspeed Indicator (ASI)	
The Film Strip Moving Map Display	
References	
Chapter 5 – The Head-Down Display	
Introduction	
The CRT multifunction Head-Down Display	
CRT MFD: principles of operation	
The shadow mask CRT	
High-and Low-Voltage Power Supply	
X/Y deflection amplifier	
The video amplifier	
Ramp generator	

Encoder	91
Keypanel and microcontroller	91
Shadow mask CRT characteristics	91
The F/A and AV-8B Multipurpose Colour Display (MPCD)	93
AMLCD Multifunction Head-Down Display	94
AMLCD HDD principles of operation	95
The AMLCD display head assembly	96
The backlight and backlight driver	98
AMLCD interface	100
Video processor	101
Graphics processor	103
Applications processor	104
Input/output interface	104
Keypanel	105
AMLCD characteristics	105
AMLCD sourcing	109
COTS AMLCSs ruggedized for airborne use	110
Examples of AMLCD HDD displays	112
Integrated display unit multifunction display	112
5ATI display unit	113
Head-Down Display format examples	116
Primary flight	116
Navigation display	117
Information and management systems	120
ECAM operation	121
References	122
Chapter 6 – The Head-Up Display	123
Introduction	123
HUD principles	124
The gyro gunsight	126
The collimating (refractive optics) Head-Up Displays	127
Field of view	131
Collimating (refractive) HUD – examples	133
The Blackburn Buccaneer	133
The British Aerospace Harrier GR.Mk1	133
McDonell Douglas/British Aerospace Night Attack Harrier II	
(GR-7 and AV-8B)	134
The Tornado GR.Mk4	135
Pupil-forming (reflective/defractive) Head-Up Displays	136
Diffractive optics (holograms)	139
Other consequences of a pupil-forming holographic HUD	142
Pupil-forming (reflective/defractive) HUD – examples	143
F16 LANTIRN HUD – multibounce quasi-axial configuration	143
Z-HUD – quasi-axial configuration	145
Eurofighter Typhoon HUD – single-element off-axis configuration	147
Head-Up Display functional description	148
Image generation	150

Other topics	151
Boresighting	151
Bird strike	152
Sunlight reflections	152
Up-front control panel	153
HUD symbology and principles of use	154
Primary flight	154
Navigation symbology	156
Air-to-surface bombs	156
Air-Air	157
References	158
Chapter 7 – Civil Head-Up Displays	159
Introduction	159
The head-up visual guidance system	160
Principle of operation	161
Symbology	163
Operational aspects	166
The stabilized approach	166
Non-precision approaches	166
Flare and roll out guidance	167
Circle to land	167
Take-off guidance	169
Ground guidance	169
Enhanced HVGS (EHVGS)	170
Infrared imaging	171 171
Lowering minima Millimetric manine reden	
Millimetric wave imaging radar	172 172
Synthetic vision Traffic collision avoidance system	172
HUD field	173
The business case	173
References	174
Chapter 9 Halmet Mounted Displays	177
Chapter 8 – Helmet-Mounted Displays Introduction	177
Physiological and environmental aspects	180
Head tracker	180
Optical head tracker	182
Electromagnetic head tracker	183
Eye tracker	183
Boresighting	184
Accuracy and dynamic performance	184
Accuracy implications	185
Dynamic performance	186
HMD configurations	186
Optical configurations	187
Helmet-Mounted Displays - examples	189

Rotocraft Helmet-Mounted Displays	189
The Apache AH64	189
The Eurocopter Tiger	190
Comanche HIDDS	192
Fast jet fighter	192
Helmet-mounted sight	193
Monocular daytime Helmet-Mounted Sight	194
Joint Helmet-Mounted Cueing Systems (JHMCS)	195
Night vision goggle HMD	195
Eurofighter Typhoon binocular, day/night Helmet-Mounted Display	196
Joint strike fighter	198
Helmet-Mounted Display functional description	199
Image source	201
Night vision goggles	202
Binocular day/night HMD architectures	203
Optical integration of NVGs with HMD imagery	203
Electrical integration of NVGs with HMD imagery	204
Symbology	205
Helmet-Mounted Display as a primary flight	206
Primary flight symbology	206
HMD impacts	207
Weight, CofG and safety	208
Accuracy	208
References	209
Chapter 9 – Emerging Display Technologies	211
Introduction	211
Candidate technologies	211
Liquid crystal displays	212
Digital Micromirror Devices (DMDs)	213
High-intensity light sources	213
Organic LED	213
Virtual retinal displays	214
The Transmissive LCD	214
The Reflective LCD	214
The digital micromirror device	216
DLP benefits	219
Organic Light-Emitting Diodes (OLEDs)	220
Rear projection Head-Down Displays	224
Projection screen	228
Illumination	229
The solid-state Head-Up Display	229
Performance requirements	230
The transmissive system	230
The reflective	232
Backlight requirements	234
Technology demonstrator	234 235

Virtual Retinal Displays	237
References	240
Chapter 10 – Advanced Display Formats	241
Introduction	241
Future Air Navigation System (FANS)	245
Communications	246
Navigation	247
Required Navigational Performance (RNP)	249
Reduced Vertical Separation Minima (RVSM)	249
Surveillance	249
Flight management systems	250
High-precision approaches	252
Terrain Avoidance Warning System (TAWS)	255
Traffic Collision Avoidance System (TCAS)	257 258
The vertical situation display Enhanced 3D and 4D situational awareness displays	250
4D experimental primary flight display	261
En route	263
Descent	263
Approach	264
Landing	264
4D experimental navigation display	264
Airfield navigation	266
Large-area displays for transport aircraft	266
The stereoscopic Head-Up Display	267
Voice control	269
Touch screen	270
Cursor control	270
Military fast jet 'big picture' crew station	271
Unmanned air vehicles (UAVs)	273
References	274
Chapter 11 – Display System Architectures	275
Introduction	275
Display suite components	275
Dumb display architecture	277
Semi-smart display architecture	278
Fully smart (integrated) display architecture	278
Display systems	279
Electronic Flight Instrument Systems (EFIS)	279 282
Architecture examples – transport aircraft	282
Classic EFIS and EICAS/ECAM systems Modular avionics display systems	284
Architecture examples – military display systems	285
Classic federated mission systems	285
Modular avionics mission systems	285
Rotorcraft	288
Kotoreunt	200

Regulatory requirements	289
Certification guidelines	292
Environmental requirements	295
Electrical power supply transient immunity	295
References	296
Chapter 12 – Visual Performance Aspects	297
Introduction	297
Human eye acuity	297
Resolution	297
Display scan times	298
Aliasing	299
Symbol size, shape, and colour	299
Display format guidelines	300
Visibility requirements	305
Civil transport aircraft requirements	305
Military combat aircraft requirements	306
Ambient illumination	307
US DoD definitions and requirements	310
European (Eurofighter Typhoon) definitions and requirements	312
Viewability examples	314
Night vision imaging system compatibility	317
Classification	320
NVIS radiance	322
Illuminated controls	323
Monochromatic Head-Down Displays	323
Multicolour Head-Down Displays	324
Head-Up Display (HUD) system	326
Canopy reflections	327
Compatible external lighting	327
References	327
Glossary of Terms	329
Index	333

Series Advisors' Foreword

The field of aerospace is wide ranging and covers a variety of disciplines and domains, not merely engineering but many related supporting activities, all combining to produce exciting and technologically challenging products.

The Aerospace Series is a practical and topical series of books aimed at engineering professionals, operators, and users in the aerospace industry. The range of topics is wide ranging, covering design and development, manufacture, operation and support of aircraft as well as topics such as infrastructure operations, and developments in research and technology. This series will provide a source of relevant information that will be of interest and benefit to all those people working in aerospace.

Aircraft Display Systems is written by a prominent practitioner in the field. Malcolm Jukes has spent most of his working life developing military and civil aircraft displays. The book addresses how the displays system performs a key part of the human-machine interface on modern aircraft and how technology has evolved to meet an increasingly demanding requirement. The topic is covered in a historical, contemporary, and forward-looking treatise that is both easy to read and very informative.

> Ian Moir and Allan Seabridge

Author's Preface

Aircraft Display Systems is part of a series of books that together are intended to describe the complete set of systems which form an essential part of modern civil and military aircraft.

Aircraft Display Systems is a broad subject, encompassing operational requirements (what the crew needs in order to safely prosecute their task), sensors and data sources (such as flight, navigation, and targeting), and finally the display medium itself.

Aircraft Display Systems provides on overview of the historical development of the civil flight deck and the military cockpit (or crewstation) from the beginnings of manned flight to modern aircraft, highlighting – by specific aircraft case studies – the significant steps in the transitions from mechanical to electromechanical instruments to modern electro-optical displays. In these transitions the interplay between operational need, sensor developments, and display technologies interact. New sensors often drive new displays as much as new display technologies drive new displays, both to satisfy a new operational requirement. Now in the information age, future operational catalysts for change to crewstation displays include the Future Air Navigation Systems in the civil transport arena and Digital Battlespace in the military arena

Aircraft Display Systems provides an in-depth explanation of current display technologies applied to Head-Down, Head-Up, and Helmet-Mounted Displays and emerging display technologies candidate for use in next generation aircraft crewstations.

Becoming ever more complex and providing as they do the interface between the human and the machine, it is imperative that display systems be developed against the backdrop of proven approaches and techniques that assure safety and integrity. *Aircraft Display Systems* provides an insight into human vision and the perception of display information in the severe airborne lighting environment together with an overview of good design practice and the regulatory requirements.

Aircraft Display Systems is aimed at practitioners in the aerospace environment – researchers, engineers, designers and operators, and crew. It is aimed at a wider audience than engineers and will be of interest to people working in marketing, procurement, manufacturing, commercial, and legal departments. Furthermore, it is intended to complement undergraduate and postgraduate courses in aerospace systems to provide a path to an exciting career in aerospace.

The book will operate at a number of levels:

- provide a top-level overview of aircraft display systems with some historical background;
- provide more in-depth description of specific technologies;
- provide references and suggestions for further reading for those who wish to develop their knowledge further.

I have tried to deal with this complex subject in a straightforward and descriptive manner, setting the context for new technologies into the background of historical display evolution. Though focussed on current display systems, technologies, and design practices I have included a comprehensive overview of potential new technologies and systems appropriate to next-generation aircraft display systems. To meet the challenge of next-generation aircraft display systems designers will require a thorough understanding of the operational needs and the capabilities and limitations of the display technologies available. My hope is that this book makes a contribution to that understanding.

Malcolm Jukes

Acknowledgements

Though I have spent most of my career working in the field

Systems, the more knowledge and experience I have gained, the more I have realized there is to gain. I have been privileged through my employment at Smiths Aerospace, and through the contacts I have made with those in a similar fields in other companies and organizations worldwide, to experience first hand many of the advances made in the transition from electromechanical instruments to the modern 'glass' flight

the entire subject of matching technical implementation to operational need totally absorbing. However, the writing of this book would not have been possible without the encouragement, guidance, and generous support of many colleagues and specialists in those companies.

Particularly I should like to thank Ian Moir, a former colleague at Smiths Aerospace, Professor John Roulston, Technical Director of BAE SYSTEMS Avionics Group, and Robb Brockie, Leon Skorczewski, and my other friends and colleagues of the UK Industrial Avionics Working Group (the IAWG) without whose encouragement I would not have begun to write the book.

My thanks and appreciation also go especially to Christopher Bartlett, BAE SYSTEMS Rochester who, with David Craig and others, provided much of the material concerning BAE SYSTEMS display products and concepts.

I should also like to thank my friends and former colleagues at Smiths Aerospace, in particular David Fraser, Peter Allsopp, Andrew Hall, Andy Harwood, Chris Overton, Alison Starr, and Julie Williams who tirelessly supplied my seemingly endless requests for data. Also to Curt Casey, Kaiser Electronics (now part of Rockwell Collins), Brian Riddle, librarian of the Royal Aeronautical Society, Faye Lomax of the Boeing Company, and Jochim Kaiser, Darmstadt University now with DASA.

Invaluable support has been given by the following companies and organizations:

Airbus BAE SYSTEMS Brilliant Technology Cambridge Display Technologies Darmstadt University DASA Duxford Imperial War Museum eMagin Microvision Inc. Planar Advance QinetiQ Rockwell Collins Smiths Aerospace Texas Instruments Thales The Boeing Company Aircraft controls and display technology have developed apace. The advent of compact, high-power, rugged digital devices has allowed a major shift from dedicated instruments to multi-function displays. *Aircraft Display Systems* covers all aspects of this vital field of avionics. All elements from simple fuel monitoring, through to the displays associated with complex fly-by-wire and navigational systems, are explored. Covering civil and military aircraft, large and small, essential information is provided for those who need to have a clear understanding of aircraft display systems.

- · Written by an internationally recognized authority
- Lavishly illustrated with photographs some in full colour
- Detailed, comprehensive coverage
- Easily accessible style
- Excellent source of valuable information
- Everyday professional reference and study text

Display systems are the vital indicators which monitor the various avionics, environmental, and electronic systems that keep aircraft in the air. *Aircraft Display Systems* introduces the reader to the means by which information is presented to the crew, enabling them to carry out their tasks safely and successfully. Topics covered include:

- Transport aircraft
- Military fast-jet and rotorcraft
- Electro-mechanical instruments
- Head-Down Displays
- Head-Up Displays

- Emerging display technologies
- Advanced display formats
- Display systems architectures
- Visual performance
- Helmet-Mounted Displays

Aircraft Display Systems provides an assessment of the current and potential future information needs in civil and military flight decks. It also offers the reader an appreciation of the technologies available to the display engineer in order to provide solutions that meet those needs. As such, this volume will be an invaluable source of information to all those involved in aircraft design, build, testing, and investigation.

About the Author

Malcolm Jukes BSc, FRAeS, FIEE has over 35 years' experience in the aerospace industry, mostly working for the Smiths Group at Cheltenham, UK. Among his many responsibilities as Chief Engineer for Defence Systems Cheltenham, Malcolm managed the design and experimental flight trials of the first UK Electronic Flight Instrument System (EFIS) and subsequently the development and application of shadow-mask CRT technology for multi-function Head-Down Displays on the F/A-18, AV8B, Eurofighter Typhoon, and EH101 aircraft. In this role, and subsequently as Technology Director, he was responsible for product technical strategy and the acquisition of new technology for Smiths UK aerospace products. One of his most significant activities was the application of AMLCD technology to civil and military aerospace applications. Malcolm was also a member of the UK Industrial Avionics Working Group (IAWG).

Malcolm is now an aerospace consultant operating in the areas of displays, display systems, and mission computing. He is the author of an important chapter in *Civil Avionics Systems* – a book by Ian Moir and Allan Seabridge, also published by Professional Engineering Publishing.

ISBN 1 86058 406 3

Professional Engineering Publishing