Aircraft Display Systems

Malcolm Jukes

Series Advisors
Ian Moir and Allan Seabridge
Related Titles

<table>
<thead>
<tr>
<th>Title</th>
<th>Author</th>
<th>ISBN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aircraft Systems – Second Edition</td>
<td>I Moir and A Seabridge</td>
<td>1 86058 289 3</td>
</tr>
<tr>
<td>Civil Avionics Systems</td>
<td>I Moir and A Seabridge</td>
<td>1 86058 342 3</td>
</tr>
<tr>
<td>Air Engines</td>
<td>T Finkelstein and A J Organ</td>
<td>1 86058 338 5</td>
</tr>
<tr>
<td>Aircraft Conceptual Design Synthesis</td>
<td>D Howe</td>
<td>1 86058 301 6</td>
</tr>
<tr>
<td>Optimizing the Super-Turbocharged Aeroengine</td>
<td>J Panting</td>
<td>1 86058 080 7</td>
</tr>
<tr>
<td>Aviation Ground Support Equipment</td>
<td>IMechE Seminar</td>
<td>1 68058 194 3</td>
</tr>
<tr>
<td>Aerospace Transmissions Technology</td>
<td>IMechE Seminar</td>
<td>1 86058 199 4</td>
</tr>
<tr>
<td>Journal of Aerospace Engineering</td>
<td>Proceedings of the</td>
<td>ISSN: 0954/4100</td>
</tr>
<tr>
<td></td>
<td>IMechE, Part G</td>
<td></td>
</tr>
</tbody>
</table>

For the full range of titles published, by Professional Engineering Publishing (publishers to the Institution of Mechanical Engineers) contact:

Marketing Department
Professional Engineering Publishing Limited
Northgate Avenue
Bury St Edmunds
Suffolk IP32 6BW
UK
Tel: +44 (0) 1284 763277; Fax: +44 (0) 1284 704006
E-mail: marketing@pepublishing.com
www.pepublishing.com
Contents

Series Advisors’ Foreword *xiv*
Author’s Preface *xv*
Acknowledgements *xvii*
Acronyms and Abbreviations *xix*

Chapter 1 – Introduction

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
</tbody>
</table>

Chapter 2 – Transport Aircraft Flight Deck

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>5</td>
</tr>
<tr>
<td>The mechanical era</td>
<td>6</td>
</tr>
<tr>
<td>The Wright brothers</td>
<td>6</td>
</tr>
<tr>
<td>Blériot</td>
<td>7</td>
</tr>
<tr>
<td>The barnstorming years</td>
<td>7</td>
</tr>
<tr>
<td>Lindbergh</td>
<td>8</td>
</tr>
<tr>
<td>Lieutenant James Doolittle</td>
<td>9</td>
</tr>
<tr>
<td>The electromechanical era</td>
<td>9</td>
</tr>
<tr>
<td>The Lockheed Electra – 1930s</td>
<td>10</td>
</tr>
<tr>
<td>The Boeing B17 Super Fortress – 1930s</td>
<td>11</td>
</tr>
<tr>
<td>The Avro Lancaster – 1940s</td>
<td>11</td>
</tr>
<tr>
<td>The Handley Page Hermes – 1950s</td>
<td>13</td>
</tr>
<tr>
<td>Migration from ‘Basic 6’ to ‘Basic T’ instrument configuration</td>
<td>18</td>
</tr>
<tr>
<td>The Boeing 747 – 1970s</td>
<td>20</td>
</tr>
<tr>
<td>The Attitude Direction Indicator (ADI)</td>
<td>21</td>
</tr>
<tr>
<td>The Horizontal Situation Indicator (HSI)</td>
<td>22</td>
</tr>
<tr>
<td>The Altimeter</td>
<td>23</td>
</tr>
<tr>
<td>The Airspeed Indicator (ASI)</td>
<td>24</td>
</tr>
<tr>
<td>Standby instruments</td>
<td>24</td>
</tr>
<tr>
<td>The electro-optical (glass) flight deck</td>
<td>25</td>
</tr>
<tr>
<td>Advanced civil flight deck research</td>
<td>25</td>
</tr>
<tr>
<td>BAC 1-11 technology demonstrator</td>
<td>26</td>
</tr>
<tr>
<td>Boeing 757 and 767</td>
<td>29</td>
</tr>
<tr>
<td>British Aerospace Advanced Turbo-Prop</td>
<td>31</td>
</tr>
<tr>
<td>Airbus A320</td>
<td>32</td>
</tr>
<tr>
<td>Boeing 747-400</td>
<td>33</td>
</tr>
<tr>
<td>Lockheed C130-J Hercules</td>
<td>34</td>
</tr>
<tr>
<td>Flight deck upgrades</td>
<td>35</td>
</tr>
<tr>
<td>Glass standby instruments</td>
<td>39</td>
</tr>
</tbody>
</table>
References

Chapter 3 – Military Fighters and Rotorcraft
The mechanical era
 The Royal Aircraft Factory S.E. 5a – 1917
 The Sopwith Snipe – 1918
The electromechanical era
 The Supermarine Spitfire
 The Gloster Meteor – 1944
The Hawker Siddley (BAE SYSTEMS) Harrier GR.Mk1
 and Mk3 (RAF) and AV-8A (USMC) – 1970s
 Panavia Tornado GR.Mk4 – late 1970s
The electro-optical era
 McDonnell Douglas F/A-18 Hornet – early 1980s
 McDonnell Douglas/British Aerospace Harrier II AV-8B and GR.Mk7
 Eurofighter Typhoon – 1990s
 Lockheed Martin F-22 Raptor – late 1990s
Rotorcraft
 Boeing (McDonnell Douglas/Hughes) AH-64D Longbow Apache
 Westland Lynx
References

Chapter 4 – Electromechanical instruments
Mechanical instruments
 The rev-counter (Tachometer)
 The incidence vane
 The airspeed indicator
 The altimeter
 The primary flight
 Attitude (pitch and roll)
 Compass
Electromechanical instruments
 The Attitude Direction Indicator (ADI)
 Barometric instruments
 The altimeter
 The Airspeed Indicator (ASI)
 The Film Strip Moving Map Display
References

Chapter 5 – The Head-Down Display
Introduction
 The CRT multifunction Head-Down Display
 CRT MFD: principles of operation
 The shadow mask CRT
 High-and Low-Voltage Power Supply
 X/Y deflection amplifier
 The video amplifier
 Ramp generator
Aircraft Display Systems

Encoder 91
Keypanel and microcontroller 91
Shadow mask CRT characteristics 91
The F/A and AV-8B Multipurpose Colour Display (MPCD) 93
AMLCD Multifunction Head-Down Display 94
AMLCD HDD principles of operation 95
The AMLCD display head assembly 96
The backlight and backlight driver 98
AMLCD interface 100
Video processor 101
Graphics processor 103
Applications processor 104
Input/output interface 104
Keypanel 105
AMLCD characteristics 105
AMLCD sourcing 109
COTS AMLCSs ruggedized for airborne use 110
Examples of AMLCD HDD displays 112
 Integrated display unit multifunction display 112
 5ATI display unit 113
Head-Down Display format examples 116
 Primary flight 116
 Navigation display 117
 Information and management systems 120
 ECAM operation 121
References 122

Chapter 6 – The Head-Up Display 123

Introduction 123
HUD principles 124
The gyro gunsight 126
The collimating (refractive optics) Head-Up Displays 127
 Field of view 131
Collimating (refractive) HUD – examples 133
 The Blackburn Buccaneer 133
 The British Aerospace Harrier GR.Mk1 133
 McDonell Douglas/British Aerospace Night Attack Harrier II (GR-7 and AV-8B) 134
 The Tornado GR.Mk4 135
Pupil-forming (reflective/defractive) Head-Up Displays 136
Diffractive optics (holograms) 139
 Other consequences of a pupil-forming holographic HUD 142
Pupil-forming (reflective/defractive) HUD – examples 143
 F16 LANTIRN HUD – multibounce quasi-axial configuration 143
 Z-HUD – quasi-axial configuration 145
 Eurofighter Typhoon HUD – single-element off-axis configuration 147
Head-Up Display functional description 148
 Image generation 150
Chapter 9 – Emerging Display Technologies

Introduction

Candidate technologies

Liquid crystal displays

Digital Micromirror Devices (DMDs)

High-intensity light sources

Organic LED

Virtual retinal displays

The Transmissive LCD

The Reflective LCD

The digital micromirror device

DLP benefits

Organic Light-Emitting Diodes (OLEDs)

Rear projection Head-Down Displays

Projection screen

Illumination

The solid-state Head-Up Display

Performance requirements

The transmissive system

The reflective

Backlight requirements

Technology demonstrator

The solid-state Helmet-Mounted Display
Virtual Retinal Displays 237
References 240

Chapter 10 – Advanced Display Formats 241
Introduction 241
Future Air Navigation System (FANS) 245
 Communications 246
 Navigation 247
 Required Navigational Performance (RNP) 249
 Reduced Vertical Separation Minima (RVSM) 249
 Surveillance 249
Flight management systems 250
High-precision approaches 252
Terrain Avoidance Warning System (TAWS) 255
Traffic Collision Avoidance System (TCAS) 257
The vertical situation display 258
Enhanced 3D and 4D situational awareness displays 261
 4D experimental primary flight display 262
 En route 263
 Descent 263
 Approach 264
 Landing 264
 4D experimental navigation display 264
 Airfield navigation 266
Large-area displays for transport aircraft 266
The stereoscopic Head-Up Display 267
Voice control 269
Touch screen 270
Cursor control 270
Military fast jet ‘big picture’ crew station 271
Unmanned air vehicles (UAVs) 273
References 274

Chapter 11 – Display System Architectures 275
Introduction 275
Display suite components 275
Dumb display architecture 277
Semi-smart display architecture 278
Fully smart (integrated) display architecture 278
Display systems 279
Electronic Flight Instrument Systems (EFIS) 279
Architecture examples – transport aircraft 282
 Classic EFIS and EICAS/ECAM systems 282
 Modular avionics display systems 284
Architecture examples – military display systems 285
 Classic federated mission systems 285
 Modular avionics mission systems 287
Rotorcraft 288
Series Advisors’ Foreword

The field of aerospace is wide ranging and covers a variety of disciplines and domains, not merely engineering but many related supporting activities, all combining to produce exciting and technologically challenging products.

The Aerospace Series is a practical and topical series of books aimed at engineering professionals, operators, and users in the aerospace industry. The range of topics is wide ranging, covering design and development, manufacture, operation and support of aircraft as well as topics such as infrastructure operations, and developments in research and technology. This series will provide a source of relevant information that will be of interest and benefit to all those people working in aerospace.

Aircraft Display Systems is written by a prominent practitioner in the field. Malcolm Jukes has spent most of his working life developing military and civil aircraft displays. The book addresses how the displays system performs a key part of the human-machine interface on modern aircraft and how technology has evolved to meet an increasingly demanding requirement. The topic is covered in a historical, contemporary, and forward-looking treatise that is both easy to read and very informative.

Ian Moir
and
Allan Seabridge
Author’s Preface

Aircraft Display Systems is part of a series of books that together are intended to describe the complete set of systems which form an essential part of modern civil and military aircraft.

Aircraft Display Systems is a broad subject, encompassing operational requirements (what the crew needs in order to safely prosecute their task), sensors and data sources (such as flight, navigation, and targeting), and finally the display medium itself.

Aircraft Display Systems provides an overview of the historical development of the civil flight deck and the military cockpit (or crewstation) from the beginnings of manned flight to modern aircraft, highlighting by specific aircraft case studies – the significant steps in the transitions from mechanical to electromechanical instruments to modern electro-optical displays. In these transitions the interplay between operational need, sensor developments, and display technologies interact. New sensors often drive new displays as much as new display technologies drive new displays, both to satisfy a new operational requirement. Now in the information age, future operational catalysts for change to crewstation displays include the Future Air Navigation Systems in the civil transport arena and Digital Battlespace in the military arena.

Aircraft Display Systems provides an in-depth explanation of current display technologies applied to Head-Down, Head-Up, and Helmet-Mounted Displays and emerging display technologies candidate for use in next generation aircraft crewstations.

Becoming ever more complex and providing as they do the interface between the human and the machine, it is imperative that display systems be developed against the backdrop of proven approaches and techniques that assure safety and integrity. *Aircraft Display Systems* provides an insight into human vision and the perception of display information in the severe airborne lighting environment together with an overview of good design practice and the regulatory requirements.

Aircraft Display Systems is aimed at practitioners in the aerospace environment – researchers, engineers, designers and operators, and crew. It is aimed at a wider audience than engineers and will be of interest to people working in marketing, procurement, manufacturing, commercial, and legal departments. Furthermore, it is intended to complement undergraduate and postgraduate courses in aerospace systems to provide a path to an exciting career in aerospace.
The book will operate at a number of levels:

- provide a top-level overview of aircraft display systems with some historical background;
- provide more in-depth description of specific technologies;
- provide references and suggestions for further reading for those who wish to develop their knowledge further.

I have tried to deal with this complex subject in a straightforward and descriptive manner, setting the context for new technologies into the background of historical display evolution. Though focussed on current display systems, technologies, and design practices I have included a comprehensive overview of potential new technologies and systems appropriate to next-generation aircraft display systems. To meet the challenge of next-generation aircraft display systems designers will require a thorough understanding of the operational needs and the capabilities and limitations of the display technologies available. My hope is that this book makes a contribution to that understanding.

Malcolm Jukes
Acknowledgements

Though I have spent most of my career working in the field of Aircraft Display Systems, the more knowledge and experience I have gained, the more I have realized there is to gain. I have been privileged through my employment at Smiths Aerospace, and through the contacts I have made with those in a similar field in other companies and organizations worldwide, to experience first-hand many of the advances made in the transition from electromechanical instruments to the modern 'glass' flight deck. The entire subject of matching technical implementation to operational need is totally absorbing. However, the writing of this book would not have been possible without the encouragement, guidance, and generous support of many colleagues and specialists in those companies.

Particularly I should like to thank Ian Moir, a former colleague at Smiths Aerospace, Professor John Roulston, Technical Director of BAE SYSTEMS Avionics Group, and Robb Brockie, Leon Skorczewski, and my other friends and colleagues of the UK Industrial Avionics Working Group (the IAWG) without whose encouragement I would not have begun to write the book.

My thanks and appreciation also go especially to Christopher Bartlett, BAE SYSTEMS Rochester who, with David Craig and others, provided much of the material concerning BAE SYSTEMS display products and concepts.

I should also like to thank my friends and former colleagues at Smiths Aerospace, in particular David Fraser, Peter Allsopp, Andrew Hall, Andy Harwood, Chris Overton, Alison Starr, and Julie Williams who tirelessly supplied my seemingly endless requests for data. Also to Curt Casey, Kaiser Electronics (now part of Rockwell Collins), Brian Riddle, librarian of the Royal Aeronautical Society, Faye Lomax of the Boeing Company, and Jochem Kaiser, Darmstadt University now with DASA.

Invaluable support has been given by the following companies and organizations:

Airbus
BAE SYSTEMS
Brilliant Technology
Cambridge Display Technologies
Darmstadt University
DASA
Duxford Imperial War Museum
eMagin

Microvision Inc.
Planar Advance
QinetiQ
Rockwell Collins
Smiths Aerospace
Texas Instruments
Thales
The Boeing Company
Aircraft controls and display technology have developed apace. The advent of compact, high-power, rugged digital devices has allowed a major shift from dedicated instruments to multi-function displays. Aircraft Display Systems covers all aspects of this vital field of avionics. All elements from simple fuel monitoring, through to the displays associated with complex fly-by-wire and navigational systems, are explored. Covering civil and military aircraft, large and small, essential information is provided for those who need to have a clear understanding of aircraft display systems.

- Written by an internationally recognized authority
- Lavishly illustrated with photographs – some in full colour
- Detailed, comprehensive coverage
- Easily accessible style
- Excellent source of valuable information
- Everyday professional reference and study text

Display systems are the vital indicators which monitor the various avionics, environmental, and electronic systems that keep aircraft in the air. Aircraft Display Systems introduces the reader to the means by which information is presented to the crew, enabling them to carry out their tasks safely and successfully. Topics covered include:

- Transport aircraft
- Military fast-jet and rotorcraft
- Electro-mechanical instruments
- Head-Down Displays
- Head-Up Displays
- Emerging display technologies
- Advanced display formats
- Display systems architectures
- Visual performance
- Helmet-Mounted Displays

Aircraft Display Systems provides an assessment of the current and potential future information needs in civil and military flight decks. It also offers the reader an appreciation of the technologies available to the display engineer in order to provide solutions that meet those needs. As such, this volume will be an invaluable source of information to all those involved in aircraft design, build, testing, and investigation.

About the Author
Malcolm Jukes BSc, FRAeS, FIEE has over 35 years' experience in the aerospace industry, mostly working for the Smiths Group at Cheltenham, UK. Among his many responsibilities as Chief Engineer for Defence Systems Cheltenham, Malcolm managed the design and experimental flight trials of the first UK Electronic Flight Instrument System (EFIS) and subsequently the development and application of shadow-mask CRT technology for multi-function Head-Down Displays on the F/A-18, AV8B, Eurofighter Typhoon, and EH101 aircraft. In this role, and subsequently as Technology Director, he was responsible for product technical strategy and the acquisition of new technology for Smiths UK aerospace products. One of his most significant activities was the application of AMLCD technology to civil and military aerospace applications. Malcolm was also a member of the UK Industrial Avionics Working Group (IAWG).

Malcolm is now an aerospace consultant operating in the areas of displays, display systems, and mission computing. He is the author of an important chapter in Civil Avionics Systems – a book by Ian Moir and Allan Seabridge, also published by Professional Engineering Publishing.

ISBN 1 86058 406 3

Professional Engineering Publishing