
AVIONIC SYSTEMS

Longman Scientific & Technical, Longman Group UK Limited, Longman House, Burnt Mill, Harlow, Essex CM20 2JE, England and Associated Companies throughout the world.

© Longman Group UK Limited 1989

All rights reserved, no part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise without either the prior written permission of the Publishers or a licence permitting restricted copying in the United Kingdom issued by the Copyright Licensing Agency Ltd, 33–34 Alfred Place, London, WC1E 7DP.

First published 1989

British Library Cataloguing in Publication Data Avionic systems.

1. Aircraft. Electronic equipment I. Middleton, Don, 1921–629.135'5

ISBN 0-582-01881-1

Set in Linotron 202 9½/12 pt Ehrhardt Roman

Produced by Longman Singapore Publishers (Pte) Ltd. Printed in Singapore

CONTENTS

Preface		vi
Glossary of acronyms used in text		vii
Gl	ossary	х
1	The Evolution of Avionics M. W. Wilson	1
	Early development of avionics Origins of radar Transition from thermionic valves to solid state	1 6 14
2	System Design Considerations S. J. K. Walker	19
	The ethos of civil aircraft safety	19
	ARINC specifications	22
	Redundancy	25
	Reliability	26
	Built-in test equipment (BITE)	27
	Automatic test equipment (ATE)	29
3	Digital Technology I. Moir	31
	Microprocessors	33
	Memory devices	35
	Data buses	37
	Software development methodologies	44
4	Flight Decks and Cockpits L. F. E. Coombs	48
	The pilot's place	48
	Instruments and displays	52
	Avionics the only answer	55
	Display and control input technologies	62
	Flight deck systems	65
	Flight deck examples	73
	Military cockpits	76

Contents

5 Flight Control Systems I. Moir	84
Principles of flight control	84
Essential elements of control	91
Civil systems	93
UK military developments	97
Advanced developments	109
6 Aircraft Management Systems I. Moir	115
Engine and propulsion control	116
Flight performance management	120
Utilities management systems	126
EAP systems	131
Health and usage monitoring (HUM)	140
Stores management systems	142
7 Navigation Systems S. J. K. Walker	148
Radio wave propagation	148
Navigation equipment	149
Air traffic control	150
Navigation displays	150
Flight management systems	153
Point source aids	153
Hyperbolic and grid systems	161
Doppler navigation	164
Self-contained systems	165
Air data acquisition and air data computers	168
Attitude heading reference system (AHRS)	169
Laser technology	171
8 Communications Systems T. T. Brown	174
Design considerations	175
Frequency bands	176
HF transmission	177
UHF/VHF transmission	179
Real time channel evaluation	180
Aircraft antennas	181
Receivers	184
Frequency synthesis	186
Voice systems	189
Transmitter modulation	192
Information theory applications	193
Data links	195
Joint tactical information distribution system (JTIDS)	196
Satellite communications	200
Public correspondence	200

	Contents
9 Airborne Radar J. A. C. Kinnear	202
Propagation Functional elements of a radar The antenna The transmitter Types of radar Pulse Doppler Civil aviation applications Military applications	203 205 209 215 216 218 219 222
10 Electronic Warfare – an Overview B. R. Drake	228
The EW spectrum Electronic support measures Electronic countermeasures Electro-optics and infra-red The future	230 232 235 242 245
11 Future trends and developments G. Warwick	247
Avionic integration Cockpit integration Sensor integration Control integration Database integration Knowledge integration	247 249 253 254 255 256
Index Index of names Index of aircraft Index of research aircraft Index of gas turbines and propulsion units	258 262 263 265 266

It is beyond doubt that the origins of what we now know as avionics was a major factor in preserving the world from Nazi domination in the 1940s and it should not be forgotten that the first manifestations of its capability were demonstrated in February 1935 when Dr Watson Watt's team carried out the famous experiment at the BBC's Daventry transmitter and received a signal reflected back from a Heyford bomber approaching Daventry.

The five decades since this memorable event have seen the enterprise and brilliance of scientists and engineers at research centres and manufacturers' works combine with computer technology to produce systems of almost unbelievable capability and reliability.

This book is intended to fill a gap in the aviation technical bookshelf by discussing the present state of the art in a manner intelligible to both the student and the technician.

As General Editor it has been my privilege and pleasure to work with the authors of each chapter – each a leading practitioner in his particular subject. To them all I express my appreciation of their enthusiasm and cooperation.

To all the companies named in the text I owe a debt of gratitude for their cooperation, for the provision of photographs and information and, where appropriate, for their courtesy in permitting their engineers to contribute to this book.

Valuable advice has been given by Mr Mike Hirst, Mr Andy Hofton, Mr Harry Ratcliffe, Mr David Yeomans and Wing Commander Charles McClure of the College of Aeronautics, Cranfield, Mr A. H. Fox of Southall College, Mr Peter Drake of the CSE Oxford Air Training School, Wing Commander G. S. Bowden at Brunel College, Professor G. C. Bloodworth and Dr R. J. Patton of the University of York, Dr Bernstein and Mr David Sweeting of Queen Mary College, University of London. Mr John Burrows, Assistant Engineering Training Superintendent of British Airways and members of his staff were also extremely helpful.

My thanks for their assistance are also due to Mr John Saull, Director and Chief Surveyor of the Civil Aviation Authority and Mr D. Hawkes. From RAE Bedford, Mr R. G. White offered valuable advice as did Dr John Clarke at the Royal Signals and Radar Establishment at Malvern.

D. H. Middleton General Editor

Avionics is a broad subject of ever-increasing complexity. Aircraft and engine control systems, navigation and communication systems are such highly specialised areas that engineers and scientists working on one particular aspect may be unaware of the developments occurring in the others.

This book is designed to bridge the gap between these areas and has been written by some of the leading avionics experts in the field. Subjects covered in the specially commissioned contributions include the evolution of avionics, systems design, digital technologies, and future trends and developments.

Avionic Systems will appeal to a wide technical and semi-technical readership including students, managers, engineers and scientists within the aviation and aerospace related industries. The breadth of information contained in the book will ensure that it is a valuable reference source for many years to come.

Front cover photograph reproduced by kind permission of Image in Industry Ltd.

