SUNDSTRAND DATA CONTROL

Optics Deployed

Optics Stowed

Sundstrand Data Control Advanced Technology Head Up Display

- Sundstrand/Douglas Aircraft Joint Development Program Began in Early 1977.
- First U.S. Sponsored Production CRT HUD Program for Transport Category Aircraft.
- HUD System Comprises Sundstrand Developed Hardware and Software; Douglas Developed Control Laws and Symbology.
- Designed for VFR and IFR Operation and Targeted for Certification to CAT Illa Limits.

PROGRAM
FUNCTIONS

DESCRIPTION

NTERFACE

Copyright 1979 Sundstrand Data Control, Inc.

Program Milestones

DESCRIPTIO FUNCTIONS

FEATURES SYMBO

DC-9-80 HUD Functions

- Manual Approach to Non-ILS Runway—Visual Control to Touchdown
- Monitor of Cat. I, II, IIIA Auto Coupled Approach, with reversion to HUD, with Visual Cues to Touchdown
- Manual Approach to ILS Runways, Cat. I or II Limits, Continuing to Touchdown with Visual Cues Below DH
- Landing Rollout
- Take-Off Roll & Take-Off
- Missed Approach (Go-Around)

Functions

DESCRIPTIO FEATURES

SYMBOLO **TERFA**

Operational Modes

Take-off/Go-around

- Take-Off Roll Provides Lateral Guidance Through Localizer Deviation and Course Error, Plus Airspeed
- Rotation Provides Lateral Guidance Through Magnetic Heading and Vertical Guidance Through Pitch Attitude, Plus Airspeed
- Climb Out Provides Attitude Information in Pitch, Roll and Heading, Plus Altitude, Airspeed and TO/GA Command
- Go-Around Provides Attitude Information in Pitch, Roll and Heading, Plus Altitude, Airspeed and TO/GA Command

Approach/Landing

- Above DH Lateral Guidance Through Localizer Deviation and Course Error, Flight Path Guidance Through Glideslope Deviation, and Pitch, Roll and Yaw Attitude Plus Airspeed and Altitude.
- DH to FH As Above Plus DH Message and Flare Indication
- FH to TD As Above Plus Safe Roll Limits
- Rollout Lateral Guidance Through Localizer Deviation and Course Error

side view

- Minimal Aircraft Modification for HUD Installation
- Remove and Replace in Ten Minutes
- Automatic Boresight Calibration
- Optics Stow Out of View When Not in Use

Optics Deployed

 Integrated Package Includes Optics, CRT, CRT Drive Electronics, Brightness Control, Speaker, Map Light and Air Outlet

Optics Stowed

 Design Assures Both Pilots Unobstructed Field of View, When Stowed or Deployed

Pilot Display Unit (PDU)

Display Digital Computer Unit

- Contained in 1/2 ATR Enclosure
- Located in the Avionics Equipment Rack
- Interfaces with Aircraft Sensors and Other Avionics Equipment
- Provides All Control Law and Symbol Generation Computation as well as Comprehensive Auto Self-Monitoring Capability

SYMBOL

System General Block Diagram

- Located in Center Pedestal
- Provides Pilot Selection of Desired Flight Path Angle and Readout
- Provides System Self-Test and Approach Mode Reset

- Auto Calibration and Stabilization
- Innovative Optical Design with Safety Breakaway Feature

- Auto Contrast Control
- Comprehensive Manual Self-Test by Push Button
- Quick Removal & Replacement

Display Digital Computer Unit

- High Speed 16-Bit Bi-Polar, Bit-Slice, 4 mHz Clock
- Memory 60 ns Bi-Polar ROM & RAM
- Addressing Capability of 65K
- 140 Instructions, Microprogrammed
- Qualified to RTCA DO-160
- Automatic Built-in Test Verifies Proper System Operation Every 60 m Sec.
- Manual Self-Test Allows Pilot to Check Symbology and Optics on Ground or In flight

SYMBOLOG

FEATURES

Symbology

Optics Field of View

Vertical

16 Degrees Instantaneous¹

26 Degrees Total with Head Movement¹

Lateral

13.4 Degrees Instantaneous Binocular¹ 30.0 Degrees Instantaneous Total²

¹Limited by Optics ²Limited by CRT Display Symbols presented to the pilot are electronically generated by a programmable digital implementation. All symbols used are continuously computed, position updated and electronically projected to the face of the cathode ray tube, then in turn, through use of an immersed optics

system, they are presented to the pilot. This information is superimposed in the pilot's forward field of view. Although all symbols are continuously written, only those symbols applicable to the current mode of operation are visible, all others are blanked.

Horizon Line
 Artificial horizon coincident with earth horizon

• Pitch Reference Fixed reference represents airplane fuselage reference line

Course Error Marker Shows airplane deviation from selected course

Airplane Symbol Indicates airplane position or flight path relative to "real world"

Lubber Line
 Represents airplane heading attitude (part of horizon line)

Aim Dot Indicates position or direction of desired flight path

Fast/Slow Bar
 Safe Roll Limits
 Indicates airspeed deviation from reference speed
 Shows envelope of safe roll attitude for touchdown

Pitch Ladder
 Provides a quantitative pitch attitude scale

Airspeed
 Presents computed airspeed in numeric digital readout

Altitude
 Presents radio altitude in numeric digital readout

CAT II Window
 Represents allowable limits on glideslope & localizer

deviation (raw data)

• Runway Edge Lines Overlay edges of "real world" runway 150 feet wide, 11,000

feet long

• Runway Inner Lines Represents allowable excursions of airplane on runway

DH Message
 Indicates that decision height has been reached

• Takeover Message Indicates autopilot has disconnected—manual control

required

TO/GA Message
 Indicates Take-Off/Go-Around mode

EXPERIEN

HUD Programs Accomplished

Electromechanical

- Installations and Evaluation:
- 747, 737, 727, DC-8
- C-130, C-5, Concorde, F-28
- Trident, YC-15, YC-14, T-38
- Production Applications:
- PWA 737, 727, L-382
- HS Trident (PRC)USAF C-130, CH-3
- British Airways 737

Electronic (CRT)

- Installations and Evaluation:
- Boeing ACS/C-14 Simulator
- Boeing 727 Training Simulator and Test A/C (Program in Progress)
- Production Applications:
- McDonnell Douglas DC-9-80 (Program in Progress)

Amsterdam, Holland
Atlanta, Georgia USA
Boston, Massachusetts, USA
Copenhagen, Denmark
Dallas/Fort Worth, Texas, USA
Dubai, United Arab Emirates
Honolulu, Hawaii, USA
Kansas City, Kansas USA
London, England
Los Angeles, California, USA

Melbourne, Australia
Miami, Florida, USA
Montreal, Canada
Munich, Germany
New York, New York, USA
Norfolk, Virginia, USA
Oklahoma City, Oklahoma, USA
Paris, France
Pensacola, Florida, USA

Redmond, Washington USA
Republic of Singapore
Rockford, Illinois, USA
San Diego, California, USA
San Francisco, California, USA
Seattle, Washington, USA
Stockholm, Sweden
Sydney, Australia
Tokyo, Japan
Washington, District of Columbia, USA

Summary

The DC-9-80 HUD constitutes an advancement in the state of the art of **HUD Technology**

Designed for the Future

- New, Unique, Optical Approach
- Fast, Powerful, Flexible, Advanced Digital Computer
- Flexible CRT Image Display

Designed for Safety

- Fail Safe System With Innovative Self-Check
- Advanced Control Law and Symbol Development
- Mechanical Breakaway Feature

Designed from Experience

- 30 Years of Avionics Design and Production
- 10 Years of HUD Application to Commercial & Military Transport Aircraft

Designed for Maintainability

- Integrated, Non-Obstructive Installation. Easy Remove & Replace
- Simple Modular LRU Design for Maintenance & Repair

Designed for Reliability

- Estimated System MTBF-1750 Operating Hours
- Redundancy in Hardware, Software and Symbology

SUMMARY

