

Gire Integrating Gyro

www.rochesteravionicarchives.co.uk

Guidance Systems Division

GEC Avionics Limited comprises a group of divisions situated at Rochester, Borehamwood, Basildon, Milton Keynes and Nailsea. specialising in all aspects of aviation instrumentation and control. The Guidance Systems Division situated at Rochester is responsible for the development and production of precision gyros, accelerometers, sensor assemblies, Strapdown Attitude Reference and Navigation Systems including Power Supplies, Output Processing Electronics and Computing.

GI-G6 Gyro

In line with GEC Avionics policy, developing technology has produced extremely successful Strapdown Inertial Reference Systems, and future design requirements for programmes of the 80's and 90's, dictate the need for the GI-G6 precision single axis torque Subminiature Rate Integrating Gyroscope.

Introduced in 1970, this gyroscope has become a designer's standard. Its high performance and reliability under adverse environments, and its ability to be produced at low cost have enabled it to be specified on many US and European programs. It is estimated that the GI-G6 supplies more than two thirds of the entire US market for subminiature rate integrating gyros.

European applications associated with the GI-G6 Gyro include the stabilisation of shipborne communication antennae, weapon aiming systems for aircraft, ships, tanks and missiles, advanced fly-by-wire flight controls, guidance systems for underwater weapons and navigation systems for land vehicles.

Many different models of the basic GI-G6 Gyro have been built to satisfy the varying application requirements of our customers. Some models feature very low drift rates - between 10° and 15°/hr over a temperature range of about 100°F (55°C). Some are capable of performing at around 1°/hr when kept at a constant temperature and under steady state conditions such as exist in a gimballed platform. Other models are designed to operate over temperature ranges of up to 300°F (149°C) with a drift rate of between 10° & 20°/hr.

Gyro Selection

Gyro selection is usually a compromise between performance and cost. Obviously the best gyro will have optimum features in all of its subcomponent elements, ie, spin motor, torquer, damping etc., but for a given application certain best features may, conflict with those of others. For instance, a larger angular momentum wheel clearly gives superior drift performance, but time taken to reach synchronisation, and/or cost to incorporate a new spin motor into the gyro assembly may be unacceptable.

An important aspect of this selection process is a thorough discussion with the gyro manufacturer during the establishment of the system error budget. Such discussion often reveals for instance, that the system will allow for the use of an existing gyro that is produced on the assembly line in large quantities, and can therefore be procured at substantially less cost than if it had to be tailored to a prespecified set of conditions. It is therefore most advantageous to consider cost driving factors during the early phases of system design.

Typical GI-G6 performance characteristics are given in the following pages. These models have in common many of the sub-components previously mentioned, and in general use the same assembly and test facilities, thereby keeping costs to a minimum.

Header Assembly

Output

Various specifications are available on request and we would be pleased to quote against your specific requirements. For further information please contact the Guidance Systems Division Sales Office.

Typical GI-G6 Characteristics

Parameter	Units	310C	657 B/C/E	650C	650E	651 A/J	651B	651D	651E	653A	654A	340B
Spin Motor Voltage Frequency	Volts RMS Hz	27.4 400	26 400	52/26 400 + 3%	26 400	26 800	30 400	30 400	30 400	26 400	19.4 400	26 800
Power Start Run Angular Momentum Sync Time, Room Temp	– – gm-cm ² /sec. sec.	4.5 W 3.5 W 32,000 60	3.8 W 3.5 W 18,500 10	25 W 3W 18,500 6	5 W 4 W 18,500 30	5 W 4 W 25,500 20	5 W 4 W 32,000 30	5 W 4 W 32,000 20	5 W 4 W 32,000 20	5 W 4 W 32,000 30	5 W 3.5 W 11,000 12	4.5 W 2.5 W 32,000 60
Signal Generator Voltage Frequency Load Phase Shift Sensitivity Null	Volts RMS Hz Ohms deg. Volts/rad. mV (max.)	10 4800 10k ± 7 24 10	8 4000 10k ± 5 29.5 10	$10 \pm 5\%$ $4800 \pm 3\%$ 10k $+ 5 \pm 7$ 29 25	8 5000 10k ± 10 23 5	8 4800 10k ± 10 19 5	8 4800 10k ± 10 19 5	8 4800 10k ± 10 19 5	8 4800 10k ± 10 19 5	8 4000 10k ± 12 29.5 10	10 3840 952 0+5 12.3 10	2 3280 10k, 0.0 ±35 7.5 5
Torque Generator												
Maximum Torquing Hate	°/000	76	105	75	105	105	105	105	105	75	200	40
Intermittent	/Sec.	200	125	75 600	200	105	105	200	200	-	-	150
Resistance	Abms	145	50	60	50	200	200	105	105	60	230	100
Scale Factor	°/sec/mA	143	0.6	06+1%	06+5%	45	1.25	1.2	1.2	0.35	2.0	1.0
Linearity	%	0.1	0.1	1	0.03°/sec. or 0.25%	0.25	0.25	0.25	0.25	0.25	1	0.5
Gyro Performance												
Transfer Function	Volts/rad.	11.5	17.9	$23 \pm 25\%$	$18 \pm 15\%$	14	19	19	19	18	2.5	7.5
Time Constant	msec.	1.0	1.0	1.1	1.0	1.25	1.25	1.25	1.0	1.1	0.5	1.0
IA Freedom Drift Rates – Maximum	$\pm deg$	2-3	0.6-1.2	1	2	2-3	2-3	0.7	-	0.9-1.8	0.35 - 1.2	1.0-2.
G-Insensitive	°/hr.	27	40	72	40	40	40	40	40	30	60	54
G-Sensitive	°/hr./g	25	40	65	30	30	30	30	30	25	50	36
Anisoelastic	°/hr./g ²	1.8	4	3.6	2	2	2	2	2	2	2	1.8
Noise	µrad.(max.)	6 (to 240 Hz)	6 (to 240 Hz)	15	15	6 (to 240 Hz)	6 (to 240 Hz)	15	15	6 (to 240 Hz)	15	6 (to 24
Environmente												
Operating Temperature Shock Vibration	°F g, msec. g RMS Hz	–50 to +240 100, 11 38 20-2000	–50 to +212 50, 11 19.2 10-2000	–50 to +240 50,11 20 20-2000	– 25 to +165 50, 11 20 20-2000	–50 to +200 100, 11 30 20-2000	-50 to +200 100, 11 30 20-2000	+32 to +122 50, 11 22 20-2000	+40 to 50, 11 22 20-20			

		Note 1
	342A	This specification data lists typical custome requirements for the GI-G6 gyro, and therefore some models are capable of achieving a higher performance than tha
)	26 ± 3% 400 ± 5 3.5 W 3 W 32,000 10	achieving a higher performance than that stated here. Where the gyro is used in a microprocessor based system, considerabl performance improvements can be made by the use of digital characterisation techniques. To date some 180 variants of this sensor have been produced covering a wide range of applications and specification requirements. Minimum cos and delivery time can therefore be achieve by selecting from those gyros currently in volume production. For further information please contact the Guidance Systems Division Sales Office.
		Note 2
027 μF	4.5 400 10k +72 3.6 10	 The GI-G6-031 variant refers to a long life, low noise gas bearing spin motor gyro. Design Notes Minimum noise performance is ensured by:- (1) Sine wave drive to the spin motor (2) Driving the signal generator with a high RMS voltage which reduces subsequent capture loop gain
	75 85 0.63 1	 Performance over temperature range High angular momentum, high rate range and high performance GI-G6 gyros employ Samarium Cobalt magnets in the torque generator. To offset the variation of magnet performance with temperature, compensating networks are fitted into the gyro Signal Generator The signal generator is optimised for operation at 4.8kHz and provides minimum phase shift at this fraguency.
2.0	3.4 1.25 ± 35% 2 25 25	 However operation over the range 400Hz to 12.8kHz is possible Mounting Flange Index notch aligned to input axis to within 3 milliradians as standard. Higher accuracy optional Lead/Pin Functions Two phase motor.
40 Hz)	2 15	Pin No. Function Pin No. Function 1 Torquer Hi 2 Torquer Lo 3 Microsyn Pri Hi
000	-40 to +160 50, 11 22 20-2000	 4 Microsyn Pri Lo 5 Motor-lead φA 6 Motor-common 7 Microsyn Sec Hi 8 Microsyn Sec Lo 9 Motor-φB 10 Case-ground 11 - 12 -

Typical GI-G6 Characteristics

														Note 1
Parameter	Units	343A	346A	321A	321C	321E	321F	321G	321H	337A	320B	320C	325B	This specification data lists typical customer requirements for the GI-G6 gyro, and therefore some models are capable of achieving a higher performance than that
Spin Motor Voltage Frequency Power Start Run Angular Momentum Sync Time, Room Temp	Volts RMS Hz - gm-cm ² /sec. sec.	70 900 600 mA 400 mA 36,000 10	24/12 1600 16.5 W 0.9 W 50,850 6	7.0 900 600 mA 400 mA 57,200 60	7.0 800 5 W 4 W 51,000 30	7.0 900 7 W 4 W 57,200 30	7.0 900 5 W 3 W 57,200 30	7.0 787.5 - 6 W max. 50,050 30	7.0 ± 0.5 900 ± 0.5% 7 W 4 W 57,200 30	12 800 2.7 W 1.3 W 12,750 15	28.5/13.0 1488 1400 mA 170 mA 20,500 1.75	28/13 1488 1600 mA 170 mA 20,500 1.75	42/35 3200 8.5 W 2.1 W 24,600 8	microprocessor based system, considerable performance improvements can be made by the use of digital characterisation techniques. To date some 180 variants of this sensor have been produced covering a wide range of applications and specification requirements. Minimum costs and delivery time can therefore be achieved by selecting from those gyros currently in volume production. For further information please contact the Guidance Systems Division Sales Office. <i>Note 2</i> The GI-G6-031 variant refers to a long life, low noise gas bearing spin motor gyro.
Voltage Frequency Load Phase Shift Sensitivity Null	Volts RMS Hz Ohms deg. Volts/rad. mV (max.)	20 4000 10k, 500 pF ±5 46 20	8 4800 10k 0±10 19 5	20 4000 10k, 500pF ±3 24 10	8 9600 10k -18 19 10	8 9000 10k ±5 8 6	8 9000 10k ± 7 8 6	8 ± 10% 3937.5 ± 2% 10k 0 ± 10 10 -	8 ± 1.0% 9000 10k 0 ± 5 8 6	4 3200 10k 0±5 9 10	5 5950 10k ± 10 10-15 2	5 5950 10k ± 10 12.5 2	3.75 4800 10k ± 10 9 20	 Design Notes Minimum noise performance is ensured by:- (1) Sine wave drive to the spin motor (2) Driving the signal generator with a high RMS voltage which reduces subsequent capture loop gain
Torque Generator Maximum Torquing Rate Continuous Intermittent Resistance Scale Factor Linearity	°/sec. °/sec. Ohms °/sec/mA %	60 100 50 0.6 0.1	60 - 45 0.35±1% 0.2	60 90 108 0.6 1.0	75 100 108 0.6 0.2	60 75 108 0.8 0.1	60 75 130 max. 0.6 0.1	60 - 108 0.834 ± 10% 1	60 75 125 max. 0.6 ± 1% 0.1	400 800 346 6.0 0.05°/sec or 0.5%	60 260 35 0.4 0.05	60 150 35 0.4 0.05	30 N/A 4.2 0.1 0.1	 requirements Performance over temperature range High angular momentum, high rate range and high performance GI-G6 gyros employ Samarium Cobalt magnets in the torque generator. To offset the variation of magnet performance with temperature, compensating networks are fitted into the gyro Signal Generator The signal generator is optimised for operation at 4.8kHz and provides
Gyro Performance Transfer Function Time Constant IA Freedom Drift Rates – Maximum G-Insensitive G-Sensitive Anisoelastic Noise	Volts/rad. msec. ± deg °/hr. °/hr./g °/hr./g ² μrad.(max.)	17.2 1.05 0.5 - 3.0 12 18 0.3 6 (to 500Hz)	19 0.75±30% 1 10 10 2 15	10 0.6 Nom. 2 – 3 12 18 0.3 6 (to 500 Hz)	12 0.6 2 – 3 15 15 1 10 (to 450 Hz)	8 0.5 2 - 3 10 10 1 10 (to 150 Hz)	8 1.0 2 - 3 15 15 0.5 10 (to 2000 Hz)	15±20% 1.2±20% 2-3 40 12 0.5 15	$8 \pm 10\%$ $1.0 \pm 10\%$ 2-3 10 15 1 10 (to 1-2000 Hz)	3.5 1.05 ± 35% 2 - 3 50 60 2 15	4.0 0.75 3 - 6 35 25 0.4 6 (to 500 Hz)	4.0 0.75 3 - 6 25 15 0.4 6 (to 500 Hz)	40 6 0.5 8 8 0.2 6 (to 500 Hz)	minimum phase shift at this frequency. However operation over the range 400Hz to 12.8kHz is possible Mounting Flange Index notch aligned to input axis to within 3 milliradians as standard. Higher accuracy optional Lead/Pin Functions Two phase motor. <u>Pin No. Function</u> 1 Torquer Hi 2 Torquer Lo 3 Microsyn Pri Hi
Environments Operating Temperature Shock Vibration	°F g, msec. g RMS Hz	-30 to +165 50, 11 10 5-500	0 to +118 100, 11 15 20-2000	-50 to +220 80, 11 10 20-2000	-67 to +149 80, 11 10 20-2000	+41 to +167 80, 11 10 20-2000	+32 to +131 80, 11 10 20-2000	-20 to +136 80, 11 10 20-2000	-65 to +167 80, 11 10 20-2000	+ 40 to +160 80, 11 10 20-2000	+45 to +125 100, 6 12.3 20-2000	+40 to +140 100, 6 12.3 20-2000	+170 50, 11 8 20-2000	 4 Microsyn Pri Lo 5 Motor-lead φA 6 Motor-common 7 Microsyn Sec Hi 8 Microsyn Sec Lo 9 Motor-φB 10 Case-ground 11 - 12 -

Typical GI-G6 Characteristics

Parameter	Units	326C	329B	344B	367A	353B	342C	355A	321M	351A	031 Gas bearing, Iow noise
Spin Motor Voltage Frequency Power Start Run Angular Momentum Sync Time, Room Temp	Volts RMS Hz - gm-cm ² /sec. sec.	30/15 1250 6VA 4VA 17,200 2	28.5/13 1498 3000 mA 300 mA 20,500 1.75	30/20 1563 6 W 1 W 21,500 6	28.1/13 400 50 W 3.5 W 9250 0.8	16.8 400 5.1 W 4 W 24000 60	26 400 3.5 W 3 W 32,000 20	17 800 4.4 W 4 W 7127 50	7 875 6.5 W 5 W 55611 30	6.5 893 600 mA 1.2 W/Leg. 35720 60	28 5000 10 W 2.75 W 32,000 20
Signal Generator Voltage Frequency Load Phase Shift Sensitivity Null	Volts RMS Hz Ohms deg. Volts/rad. mV (max.)	9 3125 20k ± 14 25 6	5 4800 10k ± 7 12 6	4.2 6250 10k ± 10 13 6	30 4800 10k ± 7 116 TBD	12 6567 10k 10±15 30 25	4.5 400 10k 72 3.6 10	5 12.8 10k - 9 -	7 4375 10k ±5 9.0 4	7 4465 10k 10 16 20	7 5000 10k 5 17 14.3
Torque Generator Maximum Torquing Rate Continuous Intermittent Resistance Scale Factor Linearity	°/sec. °/sec. Ohms °/sec./mA %	10 200 350 1.75 0.3	40 150 35 0.33 0.3	175 185 425 2.7 0.015 °/sec	525 - 80.5 3.14 0.2	205 291 2.38 0.3	60 120 28.1 0.69 4	200 253 7.14 1.5	80 121 0.75	60 120 58 0.62 0.1	115 N/A 69 0.729 0.34
Gyro Performance Transfer Function Time Constant IA Freedom Drift Rates – Maximum G-Insensitive G-Sensitive Anisoelastic Noise	Volts/rad. msec. ± deg °/hr. °/hr/g °/hr/g ² µrad.(max.)	15 2.0 2.5 – 5.0 30 15 0.8 6 (to 240 Hz)	5.5 0.7 3 - 6 15 10 0.2 6 (to 500 Hz)	4.0 1.3 0.5 – 1.0 50 15 1.0 6 (to 500 Hz)	27 0.68 ±4 290 176 1.8 -	9.9 0.48 ±4.5 100 100 1.8 -	3.4 1.25 - 25 25 -	3.7 2.0 122 104 -	10 0.86 12 12 0.5 -	10 1.0 20 30 2 10	17.94 1.2 ±14 15 14.2 – TS-2858
Environments Operating Temperature Shock Vibration	°F g, msec. g RMS Hz	+140 to +185 85, 5 11,4 50-2500	+130 to +150 40, 11 5.4 20-2000	+40 to +185 50, 11 35 10-2000	+5 to +160 35,30 15 20-2000	+40 to +225 30,30 10 20-2000	-26 to +160 30,11 see Customer Spec 100-2000	-65 to +203 MIL-STD-810B Method 516 MIL-STD-810B Method 514	–24 to +160 MIL-STD-810B MIL-STD-810B	150±2	+140 15,11 2 10-2000

Note 1

This specification data lists typical customer requirements for the GI-G6 gyro, and therefore some models are capable of achieving a higher performance than that stated here. Where the gyro is used in a microprocessor based system, considerable performance improvements can be made by the use of digital characterisation techniques. To date some 180 variants of this sensor have been produced covering a wide range of applications and specification requirements. Minimum costs and delivery time can therefore be achieved by selecting from those gyros currently in volume production. For further information please contact the Guidance Systems Division Sales Office.

Note 2

The GI-G6-031 variant refers to a long life, low noise gas bearing spin motor gyro.

Design Notes

- Minimum noise performance is ensured by:-
 - Sine wave drive to the spin motor
 Driving the signal generator with a high RMS voltage which reduces subsequent capture loop gain requirements
- Performance over temperature range High angular momentum, high rate range and high performance GI-G6 gyros employ Samarium Cobalt magnets in the torque generator. To offset the variation of magnet performance with temperature, compensating networks are fitted into the gyro

Signal Generator

The signal generator is optimised for operation at 4.8kHz and provides minimum phase shift at this frequency. However operation over the range 400Hz to 12.8kHz is possible

Mounting Flange

Index notch aligned to input axis to within 3 milliradians as standard. Higher accuracy optional

• Lead/Pin Functions Two phase motor.

Pin No.	Function
1	Torquer Hi
2	Torquer Lo
3	Microsyn Pri Hi
4	Microsyn Pri Lo
5	Motor-lead ϕA
6	Motor-common
7	Microsyn Sec Hi
8	Microsyn Sec Lo
9	Motor-øB
10	Case-ground
11	
12	-

Typical GI-G6 Configurations

Mounting Flange and Flying Leads (Standard)

Dimensions in Inches

Mounting Flange and Header Pins (Alternative)

Basic Outline (Alternative)

Gyro Circuit Diagram

This document gives only a general description of the product(s) and shall not form part of any contract. From time to time and without prior notice, changes may be made in the product(s) or in the conditions of supply.

Manufactured under licence from Northrop Corporation USA

Dimensions in Inches

Dimensions in Inches

GEC AVIONICS

GI-G6-317Y RATE INTEGRATING GYRO

PERFORMANCE CHARACTERISTICS

DRIFT **G**-Insensitive Stability (1 Sigma) G-Sensitive, per axis vector sum Stability (1 Sigma) G²-Sensitive Random

40°/hr 10°/hr 30°/hr/g 40°/hr/g 8°/hr/g 2°/hr/g² 2°/hr

8v RMS, 4800 Hz 10K ohms 0 ± 10 degrees 12.5 ma, typical

TORQUER

PICK-OFF

Excitation

Phase Shift

Current

Load

Torquing Rate, (2 sec ON, 20 sec OFF) Torquing Rate, Continuous Scale Factor Scale Factor Temperature Coefficient Linearity

1.25°/sec/ma ± 20% 0.025%/°F 0.03°/sec or 0.25%

200°/sec 105°/sec

Resistance

of reading 108 ohms

OUTLINE

GEC AVIONICS

GEC Avionics Limited Airport Works Rochester Kent ME1 2XX Telephone: Medway (0634) 44400 Telex 96333/4

Guidance Systems Division

Designed by G S D Technical Publications

SPIN MOTOR

Excitation Waveform Power, Starting Running Phases Sync Time, Room Temperature

Angular Momentum

GYRO TRANSFER FUNCTION At Room Temperature Variation from Room Temperature 0 to +200° -50 to 0°F

DAMPING COEFFICIENT

CHARACTERISTIC TIME

ENVIRONMENTS

Temperature, Storage Operating **Random Vibration** Shock Linear Acceleration Slew Rate Capability

30v RMS, 400 Hz Sine or Square 5 watts, max 4 watts, max 1, 2 or 3 30 sec, max (2 or 3-Phase Operation) 32,000 gm-cm²/sec

19v RMS/rad ± 20%

0 to + 15% Plus 20%, Minus 50%

32,000 dyna-cm/rad/sec

1.0 msec (nominal)

-65 to +250°F -50 to +200°F 30g RMS, 20 - 2000 Hz 100g, 11 msec, Sawtooth 50g 20 rad/sec

This document gives only a general description of the product(s) and shall not form part of any contract. From time to time changes may be made in the product(s) or in the conditions of supply

GEC Avionics Limited Airport Works Rochester Kent ME12XX Telephone: Medway (0634) 44400 Telex 96333/4

Copyright GEC Avionics Limited 1985 Printed in Englan

Designed by G.S.D. Technical Publicatio

Guidance Systems Division